pandasのDataFrameの概要と生成方法 | hydroculのメモ
pandasにはSeriesとDataFrameという2つのデータ構造があり、 Seriesは1次元配列に似ているのに対して、 DataFrameは2次元配列というかエクセルのようなスプレッドシートに似ている。
import pandas as pd
csv_file_name = 'data/WA_Fn-UseC_-HR-Employee-Attrition.csv'
df = pd.read_csv(csv_file_name)
df.head()
Age | Attrition | BusinessTravel | DailyRate | Department | DistanceFromHome | Education | EducationField | EmployeeCount | EmployeeNumber | ... | RelationshipSatisfaction | StandardHours | StockOptionLevel | TotalWorkingYears | TrainingTimesLastYear | WorkLifeBalance | YearsAtCompany | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 41 | Yes | Travel_Rarely | 1102 | Sales | 1 | 2 | Life Sciences | 1 | 1 | ... | 1 | 80 | 0 | 8 | 0 | 1 | 6 | 4 | 0 | 5 |
1 | 49 | No | Travel_Frequently | 279 | Research & Development | 8 | 1 | Life Sciences | 1 | 2 | ... | 4 | 80 | 1 | 10 | 3 | 3 | 10 | 7 | 1 | 7 |
2 | 37 | Yes | Travel_Rarely | 1373 | Research & Development | 2 | 2 | Other | 1 | 4 | ... | 2 | 80 | 0 | 7 | 3 | 3 | 0 | 0 | 0 | 0 |
3 | 33 | No | Travel_Frequently | 1392 | Research & Development | 3 | 4 | Life Sciences | 1 | 5 | ... | 3 | 80 | 0 | 8 | 3 | 3 | 8 | 7 | 3 | 0 |
4 | 27 | No | Travel_Rarely | 591 | Research & Development | 2 | 1 | Medical | 1 | 7 | ... | 4 | 80 | 1 | 6 | 3 | 3 | 2 | 2 | 2 | 2 |
5 rows × 35 columns
xlsx_file_name = 'data/WA_Fn-UseC_-HR-Employee-Attrition.xlsx'
xl = pd.ExcelFile(xlsx_file_name)
xl.sheet_names
['WA_Fn-UseC_-HR-Employee-Attriti', 'Data Definitions']
df = xl.parse('WA_Fn-UseC_-HR-Employee-Attriti')
df.head()
Age | Attrition | BusinessTravel | DailyRate | Department | DistanceFromHome | Education | EducationField | EmployeeCount | EmployeeNumber | ... | RelationshipSatisfaction | StandardHours | StockOptionLevel | TotalWorkingYears | TrainingTimesLastYear | WorkLifeBalance | YearsAtCompany | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 41 | Yes | Travel_Rarely | 1102 | Sales | 1 | 2 | Life Sciences | 1 | 1 | ... | 1 | 80 | 0 | 8 | 0 | 1 | 6 | 4 | 0 | 5 |
1 | 49 | No | Travel_Frequently | 279 | Research & Development | 8 | 1 | Life Sciences | 1 | 2 | ... | 4 | 80 | 1 | 10 | 3 | 3 | 10 | 7 | 1 | 7 |
2 | 37 | Yes | Travel_Rarely | 1373 | Research & Development | 2 | 2 | Other | 1 | 4 | ... | 2 | 80 | 0 | 7 | 3 | 3 | 0 | 0 | 0 | 0 |
3 | 33 | No | Travel_Frequently | 1392 | Research & Development | 3 | 4 | Life Sciences | 1 | 5 | ... | 3 | 80 | 0 | 8 | 3 | 3 | 8 | 7 | 3 | 0 |
4 | 27 | No | Travel_Rarely | 591 | Research & Development | 2 | 1 | Medical | 1 | 7 | ... | 4 | 80 | 1 | 6 | 3 | 3 | 2 | 2 | 2 | 2 |
5 rows × 35 columns
df = xl.parse(xl.sheet_names[0])
df.head()
Age | Attrition | BusinessTravel | DailyRate | Department | DistanceFromHome | Education | EducationField | EmployeeCount | EmployeeNumber | ... | RelationshipSatisfaction | StandardHours | StockOptionLevel | TotalWorkingYears | TrainingTimesLastYear | WorkLifeBalance | YearsAtCompany | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 41 | Yes | Travel_Rarely | 1102 | Sales | 1 | 2 | Life Sciences | 1 | 1 | ... | 1 | 80 | 0 | 8 | 0 | 1 | 6 | 4 | 0 | 5 |
1 | 49 | No | Travel_Frequently | 279 | Research & Development | 8 | 1 | Life Sciences | 1 | 2 | ... | 4 | 80 | 1 | 10 | 3 | 3 | 10 | 7 | 1 | 7 |
2 | 37 | Yes | Travel_Rarely | 1373 | Research & Development | 2 | 2 | Other | 1 | 4 | ... | 2 | 80 | 0 | 7 | 3 | 3 | 0 | 0 | 0 | 0 |
3 | 33 | No | Travel_Frequently | 1392 | Research & Development | 3 | 4 | Life Sciences | 1 | 5 | ... | 3 | 80 | 0 | 8 | 3 | 3 | 8 | 7 | 3 | 0 |
4 | 27 | No | Travel_Rarely | 591 | Research & Development | 2 | 1 | Medical | 1 | 7 | ... | 4 | 80 | 1 | 6 | 3 | 3 | 2 | 2 | 2 | 2 |
5 rows × 35 columns
df = pd.read_excel(xlsx_file_name, sheetname = 'WA_Fn-UseC_-HR-Employee-Attriti')
df.head()
Age | Attrition | BusinessTravel | DailyRate | Department | DistanceFromHome | Education | EducationField | EmployeeCount | EmployeeNumber | ... | RelationshipSatisfaction | StandardHours | StockOptionLevel | TotalWorkingYears | TrainingTimesLastYear | WorkLifeBalance | YearsAtCompany | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 41 | Yes | Travel_Rarely | 1102 | Sales | 1 | 2 | Life Sciences | 1 | 1 | ... | 1 | 80 | 0 | 8 | 0 | 1 | 6 | 4 | 0 | 5 |
1 | 49 | No | Travel_Frequently | 279 | Research & Development | 8 | 1 | Life Sciences | 1 | 2 | ... | 4 | 80 | 1 | 10 | 3 | 3 | 10 | 7 | 1 | 7 |
2 | 37 | Yes | Travel_Rarely | 1373 | Research & Development | 2 | 2 | Other | 1 | 4 | ... | 2 | 80 | 0 | 7 | 3 | 3 | 0 | 0 | 0 | 0 |
3 | 33 | No | Travel_Frequently | 1392 | Research & Development | 3 | 4 | Life Sciences | 1 | 5 | ... | 3 | 80 | 0 | 8 | 3 | 3 | 8 | 7 | 3 | 0 |
4 | 27 | No | Travel_Rarely | 591 | Research & Development | 2 | 1 | Medical | 1 | 7 | ... | 4 | 80 | 1 | 6 | 3 | 3 | 2 | 2 | 2 | 2 |
5 rows × 35 columns
df = pd.read_excel(xlsx_file_name)
df.head()
Age | Attrition | BusinessTravel | DailyRate | Department | DistanceFromHome | Education | EducationField | EmployeeCount | EmployeeNumber | ... | RelationshipSatisfaction | StandardHours | StockOptionLevel | TotalWorkingYears | TrainingTimesLastYear | WorkLifeBalance | YearsAtCompany | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 41 | Yes | Travel_Rarely | 1102 | Sales | 1 | 2 | Life Sciences | 1 | 1 | ... | 1 | 80 | 0 | 8 | 0 | 1 | 6 | 4 | 0 | 5 |
1 | 49 | No | Travel_Frequently | 279 | Research & Development | 8 | 1 | Life Sciences | 1 | 2 | ... | 4 | 80 | 1 | 10 | 3 | 3 | 10 | 7 | 1 | 7 |
2 | 37 | Yes | Travel_Rarely | 1373 | Research & Development | 2 | 2 | Other | 1 | 4 | ... | 2 | 80 | 0 | 7 | 3 | 3 | 0 | 0 | 0 | 0 |
3 | 33 | No | Travel_Frequently | 1392 | Research & Development | 3 | 4 | Life Sciences | 1 | 5 | ... | 3 | 80 | 0 | 8 | 3 | 3 | 8 | 7 | 3 | 0 |
4 | 27 | No | Travel_Rarely | 591 | Research & Development | 2 | 1 | Medical | 1 | 7 | ... | 4 | 80 | 1 | 6 | 3 | 3 | 2 | 2 | 2 | 2 |
5 rows × 35 columns
len(df)
1470
df.shape #(行数、列数)の形で返す
(1470, 35)
df.info() #カラム名とその型の一覧
<class 'pandas.core.frame.DataFrame'> RangeIndex: 1470 entries, 0 to 1469 Data columns (total 35 columns): Age 1470 non-null int64 Attrition 1470 non-null object BusinessTravel 1470 non-null object DailyRate 1470 non-null int64 Department 1470 non-null object DistanceFromHome 1470 non-null int64 Education 1470 non-null int64 EducationField 1470 non-null object EmployeeCount 1470 non-null int64 EmployeeNumber 1470 non-null int64 EnvironmentSatisfaction 1470 non-null int64 Gender 1470 non-null object HourlyRate 1470 non-null int64 JobInvolvement 1470 non-null int64 JobLevel 1470 non-null int64 JobRole 1470 non-null object JobSatisfaction 1470 non-null int64 MaritalStatus 1470 non-null object MonthlyIncome 1470 non-null int64 MonthlyRate 1470 non-null int64 NumCompaniesWorked 1470 non-null int64 Over18 1470 non-null object OverTime 1470 non-null object PercentSalaryHike 1470 non-null int64 PerformanceRating 1470 non-null int64 RelationshipSatisfaction 1470 non-null int64 StandardHours 1470 non-null int64 StockOptionLevel 1470 non-null int64 TotalWorkingYears 1470 non-null int64 TrainingTimesLastYear 1470 non-null int64 WorkLifeBalance 1470 non-null int64 YearsAtCompany 1470 non-null int64 YearsInCurrentRole 1470 non-null int64 YearsSinceLastPromotion 1470 non-null int64 YearsWithCurrManager 1470 non-null int64 dtypes: int64(26), object(9) memory usage: 402.0+ KB
import numpy as np
from pandas import *
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(font='IPAexGothic')
df["DailyRate"].hist(linewidth = 1, alpha=.5)
plt.xlabel("DailyRate")
plt.ylabel("Freq")
plt.show()
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(font='IPAexGothic')
df["DailyRate"].hist(orientation='horizontal', alpha=.5)
plt.xlabel("DailyRate")
plt.ylabel("Freq")
plt.show()
plt.scatter(df['HourlyRate'], df['DailyRate'])
plt.show()
pd.plotting.scatter_matrix(df[['HourlyRate', 'DailyRate', 'DistanceFromHome']], alpha=0.2, figsize=(6, 6), diagonal='kde')
plt.show()
df[['HourlyRate', 'DailyRate', 'DistanceFromHome']].cov()
HourlyRate | DailyRate | DistanceFromHome | |
---|---|---|---|
HourlyRate | 413.285626 | 191.800350 | 5.130567 |
DailyRate | 191.800350 | 162819.593737 | -16.308004 |
DistanceFromHome | 5.130567 | -16.308004 | 65.721251 |
df.cov()
Age | DailyRate | DistanceFromHome | Education | EmployeeCount | EmployeeNumber | EnvironmentSatisfaction | HourlyRate | JobInvolvement | JobLevel | ... | RelationshipSatisfaction | StandardHours | StockOptionLevel | TotalWorkingYears | TrainingTimesLastYear | WorkLifeBalance | YearsAtCompany | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 83.455049 | 39.298434 | -0.124873 | 1.946390 | 0.0 | -55.797199 | 0.101319 | 4.510422 | 0.193841 | 5.153276 | ... | 0.528776 | 0.0 | 0.291977 | 48.361684 | -0.231093 | -0.138695 | 17.423359 | 7.046750 | 6.373743 | 6.587332 |
DailyRate | 39.298434 | 162819.593737 | -16.308004 | -6.945424 | 0.0 | -12386.713294 | 8.095750 | 191.800350 | 13.246309 | 1.324944 | ... | 3.423048 | 0.0 | 14.489565 | 45.570709 | 1.275892 | -10.789322 | -84.187085 | 14.520296 | -43.206982 | -37.957055 |
DistanceFromHome | -0.124873 | -16.308004 | 65.721251 | 0.174705 | 0.0 | 160.649502 | -0.142451 | 5.130567 | 0.050667 | 0.047586 | ... | 0.057478 | 0.0 | 0.309961 | 0.291951 | -0.386118 | -0.152094 | 0.472219 | 0.553521 | 0.261991 | 0.416715 |
Education | 1.946390 | -6.945424 | 0.174705 | 1.048914 | 0.0 | 25.939251 | -0.030370 | 0.349263 | 0.030927 | 0.115170 | ... | -0.010097 | 0.0 | 0.016076 | 1.181612 | -0.033143 | 0.007105 | 0.433659 | 0.223515 | 0.179056 | 0.252390 |
EmployeeCount | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | ... | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
EmployeeNumber | -55.797199 | -12386.713294 | 160.649502 | 25.939251 | 0.0 | 362433.299749 | 11.595582 | 430.551701 | -2.950629 | -12.341279 | ... | -45.473775 | 0.0 | 31.920482 | -67.289749 | 18.320126 | 4.384426 | -41.458396 | -18.357800 | -17.496817 | -19.755358 |
EnvironmentSatisfaction | 0.101319 | 8.095750 | -0.142451 | -0.030370 | 0.0 | 11.595582 | 1.194829 | -1.107908 | -0.006438 | 0.001466 | ... | 0.009059 | 0.0 | 0.003197 | -0.022905 | -0.027283 | 0.021335 | 0.009761 | 0.071317 | 0.057040 | -0.019496 |
HourlyRate | 4.510422 | 191.800350 | 5.130567 | 0.349263 | 0.0 | 430.551701 | -1.107908 | 413.285626 | 0.620006 | -0.626800 | ... | 0.029244 | 0.0 | 0.870674 | -0.369139 | -0.224036 | -0.066170 | -2.438866 | -1.775575 | -1.750142 | -1.459700 |
JobInvolvement | 0.193841 | 13.246309 | 0.050667 | 0.030927 | 0.0 | -2.950629 | -0.006438 | 0.620006 | 0.506319 | -0.009948 | ... | 0.026386 | 0.0 | 0.013049 | -0.030634 | -0.014071 | -0.007348 | -0.093097 | 0.022473 | -0.055454 | 0.065951 |
JobLevel | 5.153276 | 1.324944 | 0.047586 | 0.115170 | 0.0 | -12.341279 | 0.001466 | -0.626800 | -0.009948 | 1.225316 | ... | 0.025901 | 0.0 | 0.013190 | 6.737044 | -0.025961 | 0.029574 | 3.626435 | 1.561913 | 1.262322 | 1.482250 |
JobSatisfaction | -0.049285 | 13.604357 | -0.032802 | -0.012759 | 0.0 | -30.705067 | -0.008179 | -1.599339 | -0.016853 | -0.002373 | ... | -0.014850 | 0.0 | 0.010046 | -0.173208 | -0.008217 | -0.015161 | -0.025693 | -0.009209 | -0.064728 | -0.108830 |
MonthlyIncome | 21412.198982 | 14641.125975 | -649.386355 | 457.874204 | 0.0 | -42028.530023 | -32.210416 | -1511.673923 | -51.159481 | 4952.416922 | ... | 131.703156 | 0.0 | 21.693112 | 28312.303770 | -131.935513 | 102.053699 | 14833.730990 | 6205.846259 | 5233.677307 | 5780.054075 |
MonthlyRate | 1823.988823 | -92428.502266 | 1585.264627 | -190.148240 | 0.0 | 54198.679015 | 292.537298 | -2213.447553 | -82.667086 | 311.714963 | ... | -31.439933 | 0.0 | -208.164513 | 1464.435332 | 13.461200 | 40.043086 | -1031.535222 | -330.479133 | 35.937006 | -933.244190 |
NumCompaniesWorked | 6.837739 | 38.457493 | -0.592359 | 0.323165 | 0.0 | -1.881380 | 0.034389 | 1.125195 | 0.026684 | 0.394036 | ... | 0.142425 | 0.0 | 0.064016 | 4.618854 | -0.212734 | -0.014764 | -1.812334 | -0.821380 | -0.296339 | -0.983301 |
PercentSalaryHike | 0.121489 | 33.529204 | 1.193809 | -0.041648 | 0.0 | -28.520432 | -0.126824 | -0.674252 | -0.044805 | -0.140705 | ... | -0.160226 | 0.0 | 0.023476 | -0.586872 | -0.024636 | -0.008480 | -0.807021 | -0.020156 | -0.261286 | -0.156517 |
PerformanceRating | 0.006276 | 0.068910 | 0.079300 | -0.009068 | 0.0 | -4.422436 | -0.011654 | -0.015930 | -0.007464 | -0.008476 | ... | -0.012231 | 0.0 | 0.001078 | 0.018933 | -0.007247 | 0.000656 | 0.007594 | 0.045738 | 0.020808 | 0.029389 |
RelationshipSatisfaction | 0.528776 | 3.423048 | 0.057478 | -0.010097 | 0.0 | -45.473775 | 0.009059 | 0.029244 | 0.026386 | 0.025901 | ... | 1.169013 | 0.0 | -0.042335 | 0.202360 | 0.003480 | 0.014975 | 0.128287 | -0.059242 | 0.116692 | -0.003347 |
StandardHours | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | ... | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
StockOptionLevel | 0.291977 | 14.489565 | 0.309961 | 0.016076 | 0.0 | 31.920482 | 0.003197 | 0.870674 | 0.013049 | 0.013190 | ... | -0.042335 | 0.0 | 0.726035 | 0.067200 | 0.012385 | 0.002485 | 0.078607 | 0.156884 | 0.039408 | 0.075091 |
TotalWorkingYears | 48.361684 | 45.570709 | 0.291951 | 1.181612 | 0.0 | -67.289749 | -0.022905 | -0.369139 | -0.030634 | 6.737044 | ... | 0.202360 | 0.0 | 0.067200 | 60.540563 | -0.357740 | 0.005539 | 29.942577 | 12.978065 | 10.151009 | 12.748396 |
TrainingTimesLastYear | -0.231093 | 1.275892 | -0.386118 | -0.033143 | 0.0 | 18.320126 | -0.027283 | -0.224036 | -0.014071 | -0.025961 | ... | 0.003480 | 0.0 | 0.012385 | -0.357740 | 1.662219 | 0.025569 | 0.028188 | -0.026801 | -0.008586 | -0.018841 |
WorkLifeBalance | -0.138695 | -10.789322 | -0.152094 | 0.007105 | 0.0 | 4.384426 | 0.021335 | -0.066170 | -0.007348 | 0.029574 | ... | 0.014975 | 0.0 | 0.002485 | 0.005539 | 0.025569 | 0.499108 | 0.052325 | 0.127616 | 0.020355 | 0.006956 |
YearsAtCompany | 17.423359 | -84.187085 | 0.472219 | 0.433659 | 0.0 | -41.458396 | 0.009761 | -2.438866 | -0.093097 | 3.626435 | ... | 0.128287 | 0.0 | 0.078607 | 29.942577 | 0.028188 | 0.052325 | 37.534310 | 16.842239 | 12.208813 | 16.815196 |
YearsInCurrentRole | 7.046750 | 14.520296 | 0.553521 | 0.223515 | 0.0 | -18.357800 | 0.071317 | -1.775575 | 0.022473 | 1.561913 | ... | -0.059242 | 0.0 | 0.156884 | 12.978065 | -0.026801 | 0.127616 | 16.842239 | 13.127122 | 6.398725 | 9.235198 |
YearsSinceLastPromotion | 6.373743 | -43.206982 | 0.261991 | 0.179056 | 0.0 | -17.496817 | 0.057040 | -1.750142 | -0.055454 | 1.262322 | ... | 0.116692 | 0.0 | 0.039408 | 10.151009 | -0.008586 | 0.020355 | 12.208813 | 6.398725 | 10.384057 | 5.866587 |
YearsWithCurrManager | 6.587332 | -37.957055 | 0.416715 | 0.252390 | 0.0 | -19.755358 | -0.019496 | -1.459700 | 0.065951 | 1.482250 | ... | -0.003347 | 0.0 | 0.075091 | 12.748396 | -0.018841 | 0.006956 | 16.815196 | 9.235198 | 5.866587 | 12.731595 |
26 rows × 26 columns
df.corr()
Age | DailyRate | DistanceFromHome | Education | EmployeeCount | EmployeeNumber | EnvironmentSatisfaction | HourlyRate | JobInvolvement | JobLevel | ... | RelationshipSatisfaction | StandardHours | StockOptionLevel | TotalWorkingYears | TrainingTimesLastYear | WorkLifeBalance | YearsAtCompany | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 1.000000 | 0.010661 | -0.001686 | 0.208034 | NaN | -0.010145 | 0.010146 | 0.024287 | 0.029820 | 0.509604 | ... | 0.053535 | NaN | 0.037510 | 0.680381 | -0.019621 | -0.021490 | 0.311309 | 0.212901 | 0.216513 | 0.202089 |
DailyRate | 0.010661 | 1.000000 | -0.004985 | -0.016806 | NaN | -0.050990 | 0.018355 | 0.023381 | 0.046135 | 0.002966 | ... | 0.007846 | NaN | 0.042143 | 0.014515 | 0.002453 | -0.037848 | -0.034055 | 0.009932 | -0.033229 | -0.026363 |
DistanceFromHome | -0.001686 | -0.004985 | 1.000000 | 0.021042 | NaN | 0.032916 | -0.016075 | 0.031131 | 0.008783 | 0.005303 | ... | 0.006557 | NaN | 0.044872 | 0.004628 | -0.036942 | -0.026556 | 0.009508 | 0.018845 | 0.010029 | 0.014406 |
Education | 0.208034 | -0.016806 | 0.021042 | 1.000000 | NaN | 0.042070 | -0.027128 | 0.016775 | 0.042438 | 0.101589 | ... | -0.009118 | NaN | 0.018422 | 0.148280 | -0.025100 | 0.009819 | 0.069114 | 0.060236 | 0.054254 | 0.069065 |
EmployeeCount | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
EmployeeNumber | -0.010145 | -0.050990 | 0.032916 | 0.042070 | NaN | 1.000000 | 0.017621 | 0.035179 | -0.006888 | -0.018519 | ... | -0.069861 | NaN | 0.062227 | -0.014365 | 0.023603 | 0.010309 | -0.011240 | -0.008416 | -0.009019 | -0.009197 |
EnvironmentSatisfaction | 0.010146 | 0.018355 | -0.016075 | -0.027128 | NaN | 0.017621 | 1.000000 | -0.049857 | -0.008278 | 0.001212 | ... | 0.007665 | NaN | 0.003432 | -0.002693 | -0.019359 | 0.027627 | 0.001458 | 0.018007 | 0.016194 | -0.004999 |
HourlyRate | 0.024287 | 0.023381 | 0.031131 | 0.016775 | NaN | 0.035179 | -0.049857 | 1.000000 | 0.042861 | -0.027853 | ... | 0.001330 | NaN | 0.050263 | -0.002334 | -0.008548 | -0.004607 | -0.019582 | -0.024106 | -0.026716 | -0.020123 |
JobInvolvement | 0.029820 | 0.046135 | 0.008783 | 0.042438 | NaN | -0.006888 | -0.008278 | 0.042861 | 1.000000 | -0.012630 | ... | 0.034297 | NaN | 0.021523 | -0.005533 | -0.015338 | -0.014617 | -0.021355 | 0.008717 | -0.024184 | 0.025976 |
JobLevel | 0.509604 | 0.002966 | 0.005303 | 0.101589 | NaN | -0.018519 | 0.001212 | -0.027853 | -0.012630 | 1.000000 | ... | 0.021642 | NaN | 0.013984 | 0.782208 | -0.018191 | 0.037818 | 0.534739 | 0.389447 | 0.353885 | 0.375281 |
JobSatisfaction | -0.004892 | 0.030571 | -0.003669 | -0.011296 | NaN | -0.046247 | -0.006784 | -0.071335 | -0.021476 | -0.001944 | ... | -0.012454 | NaN | 0.010690 | -0.020185 | -0.005779 | -0.019459 | -0.003803 | -0.002305 | -0.018214 | -0.027656 |
MonthlyIncome | 0.497855 | 0.007707 | -0.017014 | 0.094961 | NaN | -0.014829 | -0.006259 | -0.015794 | -0.015271 | 0.950300 | ... | 0.025873 | NaN | 0.005408 | 0.772893 | -0.021736 | 0.030683 | 0.514285 | 0.363818 | 0.344978 | 0.344079 |
MonthlyRate | 0.028051 | -0.032182 | 0.027473 | -0.026084 | NaN | 0.012648 | 0.037600 | -0.015297 | -0.016322 | 0.039563 | ... | -0.004085 | NaN | -0.034323 | 0.026442 | 0.001467 | 0.007963 | -0.023655 | -0.012815 | 0.001567 | -0.036746 |
NumCompaniesWorked | 0.299635 | 0.038153 | -0.029251 | 0.126317 | NaN | -0.001251 | 0.012594 | 0.022157 | 0.015012 | 0.142501 | ... | 0.052733 | NaN | 0.030075 | 0.237639 | -0.066054 | -0.008366 | -0.118421 | -0.090754 | -0.036814 | -0.110319 |
PercentSalaryHike | 0.003634 | 0.022704 | 0.040235 | -0.011111 | NaN | -0.012944 | -0.031701 | -0.009062 | -0.017205 | -0.034730 | ... | -0.040490 | NaN | 0.007528 | -0.020608 | -0.005221 | -0.003280 | -0.035991 | -0.001520 | -0.022154 | -0.011985 |
PerformanceRating | 0.001904 | 0.000473 | 0.027110 | -0.024539 | NaN | -0.020359 | -0.029548 | -0.002172 | -0.029071 | -0.021222 | ... | -0.031351 | NaN | 0.003506 | 0.006744 | -0.015579 | 0.002572 | 0.003435 | 0.034986 | 0.017896 | 0.022827 |
RelationshipSatisfaction | 0.053535 | 0.007846 | 0.006557 | -0.009118 | NaN | -0.069861 | 0.007665 | 0.001330 | 0.034297 | 0.021642 | ... | 1.000000 | NaN | -0.045952 | 0.024054 | 0.002497 | 0.019604 | 0.019367 | -0.015123 | 0.033493 | -0.000867 |
StandardHours | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
StockOptionLevel | 0.037510 | 0.042143 | 0.044872 | 0.018422 | NaN | 0.062227 | 0.003432 | 0.050263 | 0.021523 | 0.013984 | ... | -0.045952 | NaN | 1.000000 | 0.010136 | 0.011274 | 0.004129 | 0.015058 | 0.050818 | 0.014352 | 0.024698 |
TotalWorkingYears | 0.680381 | 0.014515 | 0.004628 | 0.148280 | NaN | -0.014365 | -0.002693 | -0.002334 | -0.005533 | 0.782208 | ... | 0.024054 | NaN | 0.010136 | 1.000000 | -0.035662 | 0.001008 | 0.628133 | 0.460365 | 0.404858 | 0.459188 |
TrainingTimesLastYear | -0.019621 | 0.002453 | -0.036942 | -0.025100 | NaN | 0.023603 | -0.019359 | -0.008548 | -0.015338 | -0.018191 | ... | 0.002497 | NaN | 0.011274 | -0.035662 | 1.000000 | 0.028072 | 0.003569 | -0.005738 | -0.002067 | -0.004096 |
WorkLifeBalance | -0.021490 | -0.037848 | -0.026556 | 0.009819 | NaN | 0.010309 | 0.027627 | -0.004607 | -0.014617 | 0.037818 | ... | 0.019604 | NaN | 0.004129 | 0.001008 | 0.028072 | 1.000000 | 0.012089 | 0.049856 | 0.008941 | 0.002759 |
YearsAtCompany | 0.311309 | -0.034055 | 0.009508 | 0.069114 | NaN | -0.011240 | 0.001458 | -0.019582 | -0.021355 | 0.534739 | ... | 0.019367 | NaN | 0.015058 | 0.628133 | 0.003569 | 0.012089 | 1.000000 | 0.758754 | 0.618409 | 0.769212 |
YearsInCurrentRole | 0.212901 | 0.009932 | 0.018845 | 0.060236 | NaN | -0.008416 | 0.018007 | -0.024106 | 0.008717 | 0.389447 | ... | -0.015123 | NaN | 0.050818 | 0.460365 | -0.005738 | 0.049856 | 0.758754 | 1.000000 | 0.548056 | 0.714365 |
YearsSinceLastPromotion | 0.216513 | -0.033229 | 0.010029 | 0.054254 | NaN | -0.009019 | 0.016194 | -0.026716 | -0.024184 | 0.353885 | ... | 0.033493 | NaN | 0.014352 | 0.404858 | -0.002067 | 0.008941 | 0.618409 | 0.548056 | 1.000000 | 0.510224 |
YearsWithCurrManager | 0.202089 | -0.026363 | 0.014406 | 0.069065 | NaN | -0.009197 | -0.004999 | -0.020123 | 0.025976 | 0.375281 | ... | -0.000867 | NaN | 0.024698 | 0.459188 | -0.004096 | 0.002759 | 0.769212 | 0.714365 | 0.510224 | 1.000000 |
26 rows × 26 columns
df.index
RangeIndex(start=0, stop=1470, step=1)
df.columns
Index(['Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Department', 'DistanceFromHome', 'Education', 'EducationField', 'EmployeeCount', 'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction', 'MaritalStatus', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'Over18', 'OverTime', 'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion', 'YearsWithCurrManager'], dtype='object')
df.values
array([[41, 'Yes', 'Travel_Rarely', ..., 4, 0, 5], [49, 'No', 'Travel_Frequently', ..., 7, 1, 7], [37, 'Yes', 'Travel_Rarely', ..., 0, 0, 0], ..., [27, 'No', 'Travel_Rarely', ..., 2, 0, 3], [49, 'No', 'Travel_Frequently', ..., 6, 0, 8], [34, 'No', 'Travel_Rarely', ..., 3, 1, 2]], dtype=object)
df.describe()
Age | DailyRate | DistanceFromHome | Education | EmployeeCount | EmployeeNumber | EnvironmentSatisfaction | HourlyRate | JobInvolvement | JobLevel | ... | RelationshipSatisfaction | StandardHours | StockOptionLevel | TotalWorkingYears | TrainingTimesLastYear | WorkLifeBalance | YearsAtCompany | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 1470.000000 | 1470.000000 | 1470.000000 | 1470.000000 | 1470.0 | 1470.000000 | 1470.000000 | 1470.000000 | 1470.000000 | 1470.000000 | ... | 1470.000000 | 1470.0 | 1470.000000 | 1470.000000 | 1470.000000 | 1470.000000 | 1470.000000 | 1470.000000 | 1470.000000 | 1470.000000 |
mean | 36.923810 | 802.485714 | 9.192517 | 2.912925 | 1.0 | 1024.865306 | 2.721769 | 65.891156 | 2.729932 | 2.063946 | ... | 2.712245 | 80.0 | 0.793878 | 11.279592 | 2.799320 | 2.761224 | 7.008163 | 4.229252 | 2.187755 | 4.123129 |
std | 9.135373 | 403.509100 | 8.106864 | 1.024165 | 0.0 | 602.024335 | 1.093082 | 20.329428 | 0.711561 | 1.106940 | ... | 1.081209 | 0.0 | 0.852077 | 7.780782 | 1.289271 | 0.706476 | 6.126525 | 3.623137 | 3.222430 | 3.568136 |
min | 18.000000 | 102.000000 | 1.000000 | 1.000000 | 1.0 | 1.000000 | 1.000000 | 30.000000 | 1.000000 | 1.000000 | ... | 1.000000 | 80.0 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
25% | 30.000000 | 465.000000 | 2.000000 | 2.000000 | 1.0 | 491.250000 | 2.000000 | 48.000000 | 2.000000 | 1.000000 | ... | 2.000000 | 80.0 | 0.000000 | 6.000000 | 2.000000 | 2.000000 | 3.000000 | 2.000000 | 0.000000 | 2.000000 |
50% | 36.000000 | 802.000000 | 7.000000 | 3.000000 | 1.0 | 1020.500000 | 3.000000 | 66.000000 | 3.000000 | 2.000000 | ... | 3.000000 | 80.0 | 1.000000 | 10.000000 | 3.000000 | 3.000000 | 5.000000 | 3.000000 | 1.000000 | 3.000000 |
75% | 43.000000 | 1157.000000 | 14.000000 | 4.000000 | 1.0 | 1555.750000 | 4.000000 | 83.750000 | 3.000000 | 3.000000 | ... | 4.000000 | 80.0 | 1.000000 | 15.000000 | 3.000000 | 3.000000 | 9.000000 | 7.000000 | 3.000000 | 7.000000 |
max | 60.000000 | 1499.000000 | 29.000000 | 5.000000 | 1.0 | 2068.000000 | 4.000000 | 100.000000 | 4.000000 | 5.000000 | ... | 4.000000 | 80.0 | 3.000000 | 40.000000 | 6.000000 | 4.000000 | 40.000000 | 18.000000 | 15.000000 | 17.000000 |
8 rows × 26 columns
df.head(10)
Age | Attrition | BusinessTravel | DailyRate | Department | DistanceFromHome | Education | EducationField | EmployeeCount | EmployeeNumber | ... | RelationshipSatisfaction | StandardHours | StockOptionLevel | TotalWorkingYears | TrainingTimesLastYear | WorkLifeBalance | YearsAtCompany | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 41 | Yes | Travel_Rarely | 1102 | Sales | 1 | 2 | Life Sciences | 1 | 1 | ... | 1 | 80 | 0 | 8 | 0 | 1 | 6 | 4 | 0 | 5 |
1 | 49 | No | Travel_Frequently | 279 | Research & Development | 8 | 1 | Life Sciences | 1 | 2 | ... | 4 | 80 | 1 | 10 | 3 | 3 | 10 | 7 | 1 | 7 |
2 | 37 | Yes | Travel_Rarely | 1373 | Research & Development | 2 | 2 | Other | 1 | 4 | ... | 2 | 80 | 0 | 7 | 3 | 3 | 0 | 0 | 0 | 0 |
3 | 33 | No | Travel_Frequently | 1392 | Research & Development | 3 | 4 | Life Sciences | 1 | 5 | ... | 3 | 80 | 0 | 8 | 3 | 3 | 8 | 7 | 3 | 0 |
4 | 27 | No | Travel_Rarely | 591 | Research & Development | 2 | 1 | Medical | 1 | 7 | ... | 4 | 80 | 1 | 6 | 3 | 3 | 2 | 2 | 2 | 2 |
5 | 32 | No | Travel_Frequently | 1005 | Research & Development | 2 | 2 | Life Sciences | 1 | 8 | ... | 3 | 80 | 0 | 8 | 2 | 2 | 7 | 7 | 3 | 6 |
6 | 59 | No | Travel_Rarely | 1324 | Research & Development | 3 | 3 | Medical | 1 | 10 | ... | 1 | 80 | 3 | 12 | 3 | 2 | 1 | 0 | 0 | 0 |
7 | 30 | No | Travel_Rarely | 1358 | Research & Development | 24 | 1 | Life Sciences | 1 | 11 | ... | 2 | 80 | 1 | 1 | 2 | 3 | 1 | 0 | 0 | 0 |
8 | 38 | No | Travel_Frequently | 216 | Research & Development | 23 | 3 | Life Sciences | 1 | 12 | ... | 2 | 80 | 0 | 10 | 2 | 3 | 9 | 7 | 1 | 8 |
9 | 36 | No | Travel_Rarely | 1299 | Research & Development | 27 | 3 | Medical | 1 | 13 | ... | 2 | 80 | 2 | 17 | 3 | 2 | 7 | 7 | 7 | 7 |
10 rows × 35 columns
df.tail(10)
Age | Attrition | BusinessTravel | DailyRate | Department | DistanceFromHome | Education | EducationField | EmployeeCount | EmployeeNumber | ... | RelationshipSatisfaction | StandardHours | StockOptionLevel | TotalWorkingYears | TrainingTimesLastYear | WorkLifeBalance | YearsAtCompany | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1460 | 29 | No | Travel_Rarely | 468 | Research & Development | 28 | 4 | Medical | 1 | 2054 | ... | 2 | 80 | 0 | 5 | 3 | 1 | 5 | 4 | 0 | 4 |
1461 | 50 | Yes | Travel_Rarely | 410 | Sales | 28 | 3 | Marketing | 1 | 2055 | ... | 2 | 80 | 1 | 20 | 3 | 3 | 3 | 2 | 2 | 0 |
1462 | 39 | No | Travel_Rarely | 722 | Sales | 24 | 1 | Marketing | 1 | 2056 | ... | 1 | 80 | 1 | 21 | 2 | 2 | 20 | 9 | 9 | 6 |
1463 | 31 | No | Non-Travel | 325 | Research & Development | 5 | 3 | Medical | 1 | 2057 | ... | 2 | 80 | 0 | 10 | 2 | 3 | 9 | 4 | 1 | 7 |
1464 | 26 | No | Travel_Rarely | 1167 | Sales | 5 | 3 | Other | 1 | 2060 | ... | 4 | 80 | 0 | 5 | 2 | 3 | 4 | 2 | 0 | 0 |
1465 | 36 | No | Travel_Frequently | 884 | Research & Development | 23 | 2 | Medical | 1 | 2061 | ... | 3 | 80 | 1 | 17 | 3 | 3 | 5 | 2 | 0 | 3 |
1466 | 39 | No | Travel_Rarely | 613 | Research & Development | 6 | 1 | Medical | 1 | 2062 | ... | 1 | 80 | 1 | 9 | 5 | 3 | 7 | 7 | 1 | 7 |
1467 | 27 | No | Travel_Rarely | 155 | Research & Development | 4 | 3 | Life Sciences | 1 | 2064 | ... | 2 | 80 | 1 | 6 | 0 | 3 | 6 | 2 | 0 | 3 |
1468 | 49 | No | Travel_Frequently | 1023 | Sales | 2 | 3 | Medical | 1 | 2065 | ... | 4 | 80 | 0 | 17 | 3 | 2 | 9 | 6 | 0 | 8 |
1469 | 34 | No | Travel_Rarely | 628 | Research & Development | 8 | 3 | Medical | 1 | 2068 | ... | 1 | 80 | 0 | 6 | 3 | 4 | 4 | 3 | 1 | 2 |
10 rows × 35 columns
df["Department"]
0 Sales 1 Research & Development 2 Research & Development 3 Research & Development 4 Research & Development 5 Research & Development 6 Research & Development 7 Research & Development 8 Research & Development 9 Research & Development 10 Research & Development 11 Research & Development 12 Research & Development 13 Research & Development 14 Research & Development 15 Research & Development 16 Research & Development 17 Research & Development 18 Sales 19 Research & Development 20 Research & Development 21 Sales 22 Research & Development 23 Research & Development 24 Research & Development 25 Research & Development 26 Research & Development 27 Sales 28 Research & Development 29 Sales ... 1440 Research & Development 1441 Research & Development 1442 Research & Development 1443 Research & Development 1444 Research & Development 1445 Research & Development 1446 Sales 1447 Sales 1448 Sales 1449 Research & Development 1450 Human Resources 1451 Sales 1452 Sales 1453 Sales 1454 Sales 1455 Research & Development 1456 Research & Development 1457 Research & Development 1458 Research & Development 1459 Research & Development 1460 Research & Development 1461 Sales 1462 Sales 1463 Research & Development 1464 Sales 1465 Research & Development 1466 Research & Development 1467 Research & Development 1468 Sales 1469 Research & Development Name: Department, Length: 1470, dtype: object
df[["Department","Education"]]
Department | Education | |
---|---|---|
0 | Sales | 2 |
1 | Research & Development | 1 |
2 | Research & Development | 2 |
3 | Research & Development | 4 |
4 | Research & Development | 1 |
5 | Research & Development | 2 |
6 | Research & Development | 3 |
7 | Research & Development | 1 |
8 | Research & Development | 3 |
9 | Research & Development | 3 |
10 | Research & Development | 3 |
11 | Research & Development | 2 |
12 | Research & Development | 1 |
13 | Research & Development | 2 |
14 | Research & Development | 3 |
15 | Research & Development | 4 |
16 | Research & Development | 2 |
17 | Research & Development | 2 |
18 | Sales | 4 |
19 | Research & Development | 3 |
20 | Research & Development | 2 |
21 | Sales | 4 |
22 | Research & Development | 4 |
23 | Research & Development | 2 |
24 | Research & Development | 1 |
25 | Research & Development | 3 |
26 | Research & Development | 1 |
27 | Sales | 4 |
28 | Research & Development | 4 |
29 | Sales | 4 |
... | ... | ... |
1440 | Research & Development | 2 |
1441 | Research & Development | 4 |
1442 | Research & Development | 4 |
1443 | Research & Development | 3 |
1444 | Research & Development | 2 |
1445 | Research & Development | 4 |
1446 | Sales | 3 |
1447 | Sales | 4 |
1448 | Sales | 3 |
1449 | Research & Development | 3 |
1450 | Human Resources | 4 |
1451 | Sales | 2 |
1452 | Sales | 4 |
1453 | Sales | 4 |
1454 | Sales | 3 |
1455 | Research & Development | 4 |
1456 | Research & Development | 4 |
1457 | Research & Development | 4 |
1458 | Research & Development | 4 |
1459 | Research & Development | 2 |
1460 | Research & Development | 4 |
1461 | Sales | 3 |
1462 | Sales | 1 |
1463 | Research & Development | 3 |
1464 | Sales | 3 |
1465 | Research & Development | 2 |
1466 | Research & Development | 1 |
1467 | Research & Development | 3 |
1468 | Sales | 3 |
1469 | Research & Development | 3 |
1470 rows × 2 columns
# 複数列を選択する場合にはリスト表記を使う
df.loc[:, ["Department", "Education"]]
Department | Education | |
---|---|---|
0 | Sales | 2 |
1 | Research & Development | 1 |
2 | Research & Development | 2 |
3 | Research & Development | 4 |
4 | Research & Development | 1 |
5 | Research & Development | 2 |
6 | Research & Development | 3 |
7 | Research & Development | 1 |
8 | Research & Development | 3 |
9 | Research & Development | 3 |
10 | Research & Development | 3 |
11 | Research & Development | 2 |
12 | Research & Development | 1 |
13 | Research & Development | 2 |
14 | Research & Development | 3 |
15 | Research & Development | 4 |
16 | Research & Development | 2 |
17 | Research & Development | 2 |
18 | Sales | 4 |
19 | Research & Development | 3 |
20 | Research & Development | 2 |
21 | Sales | 4 |
22 | Research & Development | 4 |
23 | Research & Development | 2 |
24 | Research & Development | 1 |
25 | Research & Development | 3 |
26 | Research & Development | 1 |
27 | Sales | 4 |
28 | Research & Development | 4 |
29 | Sales | 4 |
... | ... | ... |
1440 | Research & Development | 2 |
1441 | Research & Development | 4 |
1442 | Research & Development | 4 |
1443 | Research & Development | 3 |
1444 | Research & Development | 2 |
1445 | Research & Development | 4 |
1446 | Sales | 3 |
1447 | Sales | 4 |
1448 | Sales | 3 |
1449 | Research & Development | 3 |
1450 | Human Resources | 4 |
1451 | Sales | 2 |
1452 | Sales | 4 |
1453 | Sales | 4 |
1454 | Sales | 3 |
1455 | Research & Development | 4 |
1456 | Research & Development | 4 |
1457 | Research & Development | 4 |
1458 | Research & Development | 4 |
1459 | Research & Development | 2 |
1460 | Research & Development | 4 |
1461 | Sales | 3 |
1462 | Sales | 1 |
1463 | Research & Development | 3 |
1464 | Sales | 3 |
1465 | Research & Development | 2 |
1466 | Research & Development | 1 |
1467 | Research & Development | 3 |
1468 | Sales | 3 |
1469 | Research & Development | 3 |
1470 rows × 2 columns
# 行は全てを選択するために「:」を入れている。
df.loc[:,"Department"]
0 Sales 1 Research & Development 2 Research & Development 3 Research & Development 4 Research & Development 5 Research & Development 6 Research & Development 7 Research & Development 8 Research & Development 9 Research & Development 10 Research & Development 11 Research & Development 12 Research & Development 13 Research & Development 14 Research & Development 15 Research & Development 16 Research & Development 17 Research & Development 18 Sales 19 Research & Development 20 Research & Development 21 Sales 22 Research & Development 23 Research & Development 24 Research & Development 25 Research & Development 26 Research & Development 27 Sales 28 Research & Development 29 Sales ... 1440 Research & Development 1441 Research & Development 1442 Research & Development 1443 Research & Development 1444 Research & Development 1445 Research & Development 1446 Sales 1447 Sales 1448 Sales 1449 Research & Development 1450 Human Resources 1451 Sales 1452 Sales 1453 Sales 1454 Sales 1455 Research & Development 1456 Research & Development 1457 Research & Development 1458 Research & Development 1459 Research & Development 1460 Research & Development 1461 Sales 1462 Sales 1463 Research & Development 1464 Sales 1465 Research & Development 1466 Research & Development 1467 Research & Development 1468 Sales 1469 Research & Development Name: Department, Length: 1470, dtype: object
# 番号で選択
df.iloc[:, 0]
0 41 1 49 2 37 3 33 4 27 5 32 6 59 7 30 8 38 9 36 10 35 11 29 12 31 13 34 14 28 15 29 16 32 17 22 18 53 19 38 20 24 21 36 22 34 23 21 24 34 25 53 26 32 27 42 28 44 29 46 .. 1440 36 1441 56 1442 29 1443 42 1444 56 1445 41 1446 34 1447 36 1448 41 1449 32 1450 35 1451 38 1452 50 1453 36 1454 45 1455 40 1456 35 1457 40 1458 35 1459 29 1460 29 1461 50 1462 39 1463 31 1464 26 1465 36 1466 39 1467 27 1468 49 1469 34 Name: Age, Length: 1470, dtype: int64
#複数で連番の場合。リスト表記でも行ける
df.iloc[:, 0:2]
Age | Attrition | |
---|---|---|
0 | 41 | Yes |
1 | 49 | No |
2 | 37 | Yes |
3 | 33 | No |
4 | 27 | No |
5 | 32 | No |
6 | 59 | No |
7 | 30 | No |
8 | 38 | No |
9 | 36 | No |
10 | 35 | No |
11 | 29 | No |
12 | 31 | No |
13 | 34 | No |
14 | 28 | Yes |
15 | 29 | No |
16 | 32 | No |
17 | 22 | No |
18 | 53 | No |
19 | 38 | No |
20 | 24 | No |
21 | 36 | Yes |
22 | 34 | No |
23 | 21 | No |
24 | 34 | Yes |
25 | 53 | No |
26 | 32 | Yes |
27 | 42 | No |
28 | 44 | No |
29 | 46 | No |
... | ... | ... |
1440 | 36 | No |
1441 | 56 | No |
1442 | 29 | Yes |
1443 | 42 | No |
1444 | 56 | Yes |
1445 | 41 | No |
1446 | 34 | No |
1447 | 36 | No |
1448 | 41 | No |
1449 | 32 | No |
1450 | 35 | No |
1451 | 38 | No |
1452 | 50 | Yes |
1453 | 36 | No |
1454 | 45 | No |
1455 | 40 | No |
1456 | 35 | No |
1457 | 40 | No |
1458 | 35 | No |
1459 | 29 | No |
1460 | 29 | No |
1461 | 50 | Yes |
1462 | 39 | No |
1463 | 31 | No |
1464 | 26 | No |
1465 | 36 | No |
1466 | 39 | No |
1467 | 27 | No |
1468 | 49 | No |
1469 | 34 | No |
1470 rows × 2 columns
df.T
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 1460 | 1461 | 1462 | 1463 | 1464 | 1465 | 1466 | 1467 | 1468 | 1469 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 41 | 49 | 37 | 33 | 27 | 32 | 59 | 30 | 38 | 36 | ... | 29 | 50 | 39 | 31 | 26 | 36 | 39 | 27 | 49 | 34 |
Attrition | Yes | No | Yes | No | No | No | No | No | No | No | ... | No | Yes | No | No | No | No | No | No | No | No |
BusinessTravel | Travel_Rarely | Travel_Frequently | Travel_Rarely | Travel_Frequently | Travel_Rarely | Travel_Frequently | Travel_Rarely | Travel_Rarely | Travel_Frequently | Travel_Rarely | ... | Travel_Rarely | Travel_Rarely | Travel_Rarely | Non-Travel | Travel_Rarely | Travel_Frequently | Travel_Rarely | Travel_Rarely | Travel_Frequently | Travel_Rarely |
DailyRate | 1102 | 279 | 1373 | 1392 | 591 | 1005 | 1324 | 1358 | 216 | 1299 | ... | 468 | 410 | 722 | 325 | 1167 | 884 | 613 | 155 | 1023 | 628 |
Department | Sales | Research & Development | Research & Development | Research & Development | Research & Development | Research & Development | Research & Development | Research & Development | Research & Development | Research & Development | ... | Research & Development | Sales | Sales | Research & Development | Sales | Research & Development | Research & Development | Research & Development | Sales | Research & Development |
DistanceFromHome | 1 | 8 | 2 | 3 | 2 | 2 | 3 | 24 | 23 | 27 | ... | 28 | 28 | 24 | 5 | 5 | 23 | 6 | 4 | 2 | 8 |
Education | 2 | 1 | 2 | 4 | 1 | 2 | 3 | 1 | 3 | 3 | ... | 4 | 3 | 1 | 3 | 3 | 2 | 1 | 3 | 3 | 3 |
EducationField | Life Sciences | Life Sciences | Other | Life Sciences | Medical | Life Sciences | Medical | Life Sciences | Life Sciences | Medical | ... | Medical | Marketing | Marketing | Medical | Other | Medical | Medical | Life Sciences | Medical | Medical |
EmployeeCount | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ... | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
EmployeeNumber | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 12 | 13 | ... | 2054 | 2055 | 2056 | 2057 | 2060 | 2061 | 2062 | 2064 | 2065 | 2068 |
EnvironmentSatisfaction | 2 | 3 | 4 | 4 | 1 | 4 | 3 | 4 | 4 | 3 | ... | 4 | 4 | 2 | 2 | 4 | 3 | 4 | 2 | 4 | 2 |
Gender | Female | Male | Male | Female | Male | Male | Female | Male | Male | Male | ... | Female | Male | Female | Male | Female | Male | Male | Male | Male | Male |
HourlyRate | 94 | 61 | 92 | 56 | 40 | 79 | 81 | 67 | 44 | 94 | ... | 73 | 39 | 60 | 74 | 30 | 41 | 42 | 87 | 63 | 82 |
JobInvolvement | 3 | 2 | 2 | 3 | 3 | 3 | 4 | 3 | 2 | 3 | ... | 2 | 2 | 2 | 3 | 2 | 4 | 2 | 4 | 2 | 4 |
JobLevel | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | ... | 1 | 3 | 4 | 2 | 1 | 2 | 3 | 2 | 2 | 2 |
JobRole | Sales Executive | Research Scientist | Laboratory Technician | Research Scientist | Laboratory Technician | Laboratory Technician | Laboratory Technician | Laboratory Technician | Manufacturing Director | Healthcare Representative | ... | Research Scientist | Sales Executive | Sales Executive | Manufacturing Director | Sales Representative | Laboratory Technician | Healthcare Representative | Manufacturing Director | Sales Executive | Laboratory Technician |
JobSatisfaction | 4 | 2 | 3 | 3 | 2 | 4 | 1 | 3 | 3 | 3 | ... | 1 | 1 | 4 | 1 | 3 | 4 | 1 | 2 | 2 | 3 |
MaritalStatus | Single | Married | Single | Married | Married | Single | Married | Divorced | Single | Married | ... | Single | Divorced | Married | Single | Single | Married | Married | Married | Married | Married |
MonthlyIncome | 5993 | 5130 | 2090 | 2909 | 3468 | 3068 | 2670 | 2693 | 9526 | 5237 | ... | 3785 | 10854 | 12031 | 9936 | 2966 | 2571 | 9991 | 6142 | 5390 | 4404 |
MonthlyRate | 19479 | 24907 | 2396 | 23159 | 16632 | 11864 | 9964 | 13335 | 8787 | 16577 | ... | 8489 | 16586 | 8828 | 3787 | 21378 | 12290 | 21457 | 5174 | 13243 | 10228 |
NumCompaniesWorked | 8 | 1 | 6 | 1 | 9 | 0 | 4 | 1 | 0 | 6 | ... | 1 | 4 | 0 | 0 | 0 | 4 | 4 | 1 | 2 | 2 |
Over18 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | ... | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
OverTime | Yes | No | Yes | Yes | No | No | Yes | No | No | No | ... | No | Yes | No | No | No | No | No | Yes | No | No |
PercentSalaryHike | 11 | 23 | 15 | 11 | 12 | 13 | 20 | 22 | 21 | 13 | ... | 14 | 13 | 11 | 19 | 18 | 17 | 15 | 20 | 14 | 12 |
PerformanceRating | 3 | 4 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 3 | ... | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3 |
RelationshipSatisfaction | 1 | 4 | 2 | 3 | 4 | 3 | 1 | 2 | 2 | 2 | ... | 2 | 2 | 1 | 2 | 4 | 3 | 1 | 2 | 4 | 1 |
StandardHours | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | ... | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
StockOptionLevel | 0 | 1 | 0 | 0 | 1 | 0 | 3 | 1 | 0 | 2 | ... | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
TotalWorkingYears | 8 | 10 | 7 | 8 | 6 | 8 | 12 | 1 | 10 | 17 | ... | 5 | 20 | 21 | 10 | 5 | 17 | 9 | 6 | 17 | 6 |
TrainingTimesLastYear | 0 | 3 | 3 | 3 | 3 | 2 | 3 | 2 | 2 | 3 | ... | 3 | 3 | 2 | 2 | 2 | 3 | 5 | 0 | 3 | 3 |
WorkLifeBalance | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | ... | 1 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 2 | 4 |
YearsAtCompany | 6 | 10 | 0 | 8 | 2 | 7 | 1 | 1 | 9 | 7 | ... | 5 | 3 | 20 | 9 | 4 | 5 | 7 | 6 | 9 | 4 |
YearsInCurrentRole | 4 | 7 | 0 | 7 | 2 | 7 | 0 | 0 | 7 | 7 | ... | 4 | 2 | 9 | 4 | 2 | 2 | 7 | 2 | 6 | 3 |
YearsSinceLastPromotion | 0 | 1 | 0 | 3 | 2 | 3 | 0 | 0 | 1 | 7 | ... | 0 | 2 | 9 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
YearsWithCurrManager | 5 | 7 | 0 | 0 | 2 | 6 | 0 | 0 | 8 | 7 | ... | 4 | 0 | 6 | 7 | 0 | 3 | 7 | 3 | 8 | 2 |
35 rows × 1470 columns
df.sort_index(axis=1, ascending=False)
YearsWithCurrManager | YearsSinceLastPromotion | YearsInCurrentRole | YearsAtCompany | WorkLifeBalance | TrainingTimesLastYear | TotalWorkingYears | StockOptionLevel | StandardHours | RelationshipSatisfaction | ... | EmployeeNumber | EmployeeCount | EducationField | Education | DistanceFromHome | Department | DailyRate | BusinessTravel | Attrition | Age | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 0 | 4 | 6 | 1 | 0 | 8 | 0 | 80 | 1 | ... | 1 | 1 | Life Sciences | 2 | 1 | Sales | 1102 | Travel_Rarely | Yes | 41 |
1 | 7 | 1 | 7 | 10 | 3 | 3 | 10 | 1 | 80 | 4 | ... | 2 | 1 | Life Sciences | 1 | 8 | Research & Development | 279 | Travel_Frequently | No | 49 |
2 | 0 | 0 | 0 | 0 | 3 | 3 | 7 | 0 | 80 | 2 | ... | 4 | 1 | Other | 2 | 2 | Research & Development | 1373 | Travel_Rarely | Yes | 37 |
3 | 0 | 3 | 7 | 8 | 3 | 3 | 8 | 0 | 80 | 3 | ... | 5 | 1 | Life Sciences | 4 | 3 | Research & Development | 1392 | Travel_Frequently | No | 33 |
4 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 1 | 80 | 4 | ... | 7 | 1 | Medical | 1 | 2 | Research & Development | 591 | Travel_Rarely | No | 27 |
5 | 6 | 3 | 7 | 7 | 2 | 2 | 8 | 0 | 80 | 3 | ... | 8 | 1 | Life Sciences | 2 | 2 | Research & Development | 1005 | Travel_Frequently | No | 32 |
6 | 0 | 0 | 0 | 1 | 2 | 3 | 12 | 3 | 80 | 1 | ... | 10 | 1 | Medical | 3 | 3 | Research & Development | 1324 | Travel_Rarely | No | 59 |
7 | 0 | 0 | 0 | 1 | 3 | 2 | 1 | 1 | 80 | 2 | ... | 11 | 1 | Life Sciences | 1 | 24 | Research & Development | 1358 | Travel_Rarely | No | 30 |
8 | 8 | 1 | 7 | 9 | 3 | 2 | 10 | 0 | 80 | 2 | ... | 12 | 1 | Life Sciences | 3 | 23 | Research & Development | 216 | Travel_Frequently | No | 38 |
9 | 7 | 7 | 7 | 7 | 2 | 3 | 17 | 2 | 80 | 2 | ... | 13 | 1 | Medical | 3 | 27 | Research & Development | 1299 | Travel_Rarely | No | 36 |
10 | 3 | 0 | 4 | 5 | 3 | 5 | 6 | 1 | 80 | 3 | ... | 14 | 1 | Medical | 3 | 16 | Research & Development | 809 | Travel_Rarely | No | 35 |
11 | 8 | 0 | 5 | 9 | 3 | 3 | 10 | 0 | 80 | 4 | ... | 15 | 1 | Life Sciences | 2 | 15 | Research & Development | 153 | Travel_Rarely | No | 29 |
12 | 3 | 4 | 2 | 5 | 2 | 1 | 5 | 1 | 80 | 4 | ... | 16 | 1 | Life Sciences | 1 | 26 | Research & Development | 670 | Travel_Rarely | No | 31 |
13 | 2 | 1 | 2 | 2 | 3 | 2 | 3 | 1 | 80 | 3 | ... | 18 | 1 | Medical | 2 | 19 | Research & Development | 1346 | Travel_Rarely | No | 34 |
14 | 3 | 0 | 2 | 4 | 3 | 4 | 6 | 0 | 80 | 2 | ... | 19 | 1 | Life Sciences | 3 | 24 | Research & Development | 103 | Travel_Rarely | Yes | 28 |
15 | 8 | 8 | 9 | 10 | 3 | 1 | 10 | 1 | 80 | 3 | ... | 20 | 1 | Life Sciences | 4 | 21 | Research & Development | 1389 | Travel_Rarely | No | 29 |
16 | 5 | 0 | 2 | 6 | 2 | 5 | 7 | 2 | 80 | 4 | ... | 21 | 1 | Life Sciences | 2 | 5 | Research & Development | 334 | Travel_Rarely | No | 32 |
17 | 0 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 80 | 2 | ... | 22 | 1 | Medical | 2 | 16 | Research & Development | 1123 | Non-Travel | No | 22 |
18 | 7 | 3 | 8 | 25 | 3 | 3 | 31 | 0 | 80 | 3 | ... | 23 | 1 | Life Sciences | 4 | 2 | Sales | 1219 | Travel_Rarely | No | 53 |
19 | 2 | 1 | 2 | 3 | 3 | 3 | 6 | 0 | 80 | 3 | ... | 24 | 1 | Life Sciences | 3 | 2 | Research & Development | 371 | Travel_Rarely | No | 38 |
20 | 3 | 1 | 2 | 4 | 2 | 5 | 5 | 1 | 80 | 4 | ... | 26 | 1 | Other | 2 | 11 | Research & Development | 673 | Non-Travel | No | 24 |
21 | 3 | 0 | 3 | 5 | 3 | 4 | 10 | 0 | 80 | 2 | ... | 27 | 1 | Life Sciences | 4 | 9 | Sales | 1218 | Travel_Rarely | Yes | 36 |
22 | 11 | 2 | 6 | 12 | 3 | 4 | 13 | 0 | 80 | 3 | ... | 28 | 1 | Life Sciences | 4 | 7 | Research & Development | 419 | Travel_Rarely | No | 34 |
23 | 0 | 0 | 0 | 0 | 3 | 6 | 0 | 0 | 80 | 4 | ... | 30 | 1 | Life Sciences | 2 | 15 | Research & Development | 391 | Travel_Rarely | No | 21 |
24 | 3 | 1 | 2 | 4 | 3 | 2 | 8 | 0 | 80 | 3 | ... | 31 | 1 | Medical | 1 | 6 | Research & Development | 699 | Travel_Rarely | Yes | 34 |
25 | 8 | 4 | 13 | 14 | 2 | 3 | 26 | 1 | 80 | 4 | ... | 32 | 1 | Other | 3 | 5 | Research & Development | 1282 | Travel_Rarely | No | 53 |
26 | 7 | 6 | 2 | 10 | 3 | 5 | 10 | 0 | 80 | 2 | ... | 33 | 1 | Life Sciences | 1 | 16 | Research & Development | 1125 | Travel_Frequently | Yes | 32 |
27 | 2 | 4 | 7 | 9 | 3 | 2 | 10 | 1 | 80 | 4 | ... | 35 | 1 | Marketing | 4 | 8 | Sales | 691 | Travel_Rarely | No | 42 |
28 | 17 | 5 | 6 | 22 | 3 | 4 | 24 | 1 | 80 | 4 | ... | 36 | 1 | Medical | 4 | 7 | Research & Development | 477 | Travel_Rarely | No | 44 |
29 | 1 | 2 | 2 | 2 | 2 | 2 | 22 | 0 | 80 | 4 | ... | 38 | 1 | Marketing | 4 | 2 | Sales | 705 | Travel_Rarely | No | 46 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1440 | 2 | 0 | 2 | 4 | 3 | 3 | 18 | 3 | 80 | 2 | ... | 2025 | 1 | Life Sciences | 2 | 4 | Research & Development | 688 | Travel_Frequently | No | 36 |
1441 | 9 | 1 | 12 | 13 | 2 | 2 | 13 | 1 | 80 | 1 | ... | 2026 | 1 | Life Sciences | 4 | 1 | Research & Development | 667 | Non-Travel | No | 56 |
1442 | 2 | 2 | 2 | 2 | 4 | 3 | 4 | 3 | 80 | 2 | ... | 2027 | 1 | Medical | 4 | 1 | Research & Development | 1092 | Travel_Rarely | Yes | 29 |
1443 | 14 | 4 | 6 | 22 | 2 | 2 | 24 | 0 | 80 | 1 | ... | 2031 | 1 | Life Sciences | 3 | 2 | Research & Development | 300 | Travel_Rarely | No | 42 |
1444 | 8 | 9 | 9 | 10 | 1 | 4 | 14 | 1 | 80 | 4 | ... | 2032 | 1 | Technical Degree | 2 | 7 | Research & Development | 310 | Travel_Rarely | Yes | 56 |
1445 | 10 | 0 | 7 | 20 | 3 | 3 | 21 | 1 | 80 | 3 | ... | 2034 | 1 | Life Sciences | 4 | 28 | Research & Development | 582 | Travel_Rarely | No | 41 |
1446 | 7 | 1 | 7 | 8 | 3 | 2 | 8 | 2 | 80 | 4 | ... | 2035 | 1 | Marketing | 3 | 28 | Sales | 704 | Travel_Rarely | No | 34 |
1447 | 11 | 11 | 12 | 15 | 2 | 4 | 15 | 1 | 80 | 1 | ... | 2036 | 1 | Marketing | 4 | 15 | Sales | 301 | Non-Travel | No | 36 |
1448 | 4 | 0 | 4 | 5 | 3 | 5 | 14 | 1 | 80 | 3 | ... | 2037 | 1 | Life Sciences | 3 | 3 | Sales | 930 | Travel_Rarely | No | 41 |
1449 | 2 | 1 | 2 | 4 | 3 | 4 | 4 | 0 | 80 | 4 | ... | 2038 | 1 | Technical Degree | 3 | 2 | Research & Development | 529 | Travel_Rarely | No | 32 |
1450 | 7 | 1 | 0 | 9 | 3 | 2 | 9 | 0 | 80 | 3 | ... | 2040 | 1 | Life Sciences | 4 | 26 | Human Resources | 1146 | Travel_Rarely | No | 35 |
1451 | 9 | 1 | 7 | 10 | 3 | 1 | 10 | 1 | 80 | 3 | ... | 2041 | 1 | Life Sciences | 2 | 10 | Sales | 345 | Travel_Rarely | No | 38 |
1452 | 1 | 0 | 3 | 6 | 3 | 3 | 12 | 2 | 80 | 4 | ... | 2044 | 1 | Life Sciences | 4 | 1 | Sales | 878 | Travel_Frequently | Yes | 50 |
1453 | 0 | 0 | 3 | 6 | 2 | 2 | 8 | 1 | 80 | 1 | ... | 2045 | 1 | Marketing | 4 | 11 | Sales | 1120 | Travel_Rarely | No | 36 |
1454 | 1 | 0 | 3 | 5 | 3 | 3 | 8 | 0 | 80 | 3 | ... | 2046 | 1 | Life Sciences | 3 | 20 | Sales | 374 | Travel_Rarely | No | 45 |
1455 | 2 | 2 | 2 | 2 | 3 | 2 | 8 | 0 | 80 | 4 | ... | 2048 | 1 | Life Sciences | 4 | 2 | Research & Development | 1322 | Travel_Rarely | No | 40 |
1456 | 2 | 0 | 2 | 10 | 4 | 2 | 10 | 2 | 80 | 4 | ... | 2049 | 1 | Life Sciences | 4 | 18 | Research & Development | 1199 | Travel_Frequently | No | 35 |
1457 | 2 | 0 | 3 | 5 | 3 | 2 | 20 | 3 | 80 | 2 | ... | 2051 | 1 | Medical | 4 | 2 | Research & Development | 1194 | Travel_Rarely | No | 40 |
1458 | 1 | 1 | 3 | 4 | 3 | 5 | 4 | 1 | 80 | 4 | ... | 2052 | 1 | Life Sciences | 4 | 1 | Research & Development | 287 | Travel_Rarely | No | 35 |
1459 | 3 | 0 | 3 | 4 | 3 | 2 | 10 | 1 | 80 | 1 | ... | 2053 | 1 | Other | 2 | 13 | Research & Development | 1378 | Travel_Rarely | No | 29 |
1460 | 4 | 0 | 4 | 5 | 1 | 3 | 5 | 0 | 80 | 2 | ... | 2054 | 1 | Medical | 4 | 28 | Research & Development | 468 | Travel_Rarely | No | 29 |
1461 | 0 | 2 | 2 | 3 | 3 | 3 | 20 | 1 | 80 | 2 | ... | 2055 | 1 | Marketing | 3 | 28 | Sales | 410 | Travel_Rarely | Yes | 50 |
1462 | 6 | 9 | 9 | 20 | 2 | 2 | 21 | 1 | 80 | 1 | ... | 2056 | 1 | Marketing | 1 | 24 | Sales | 722 | Travel_Rarely | No | 39 |
1463 | 7 | 1 | 4 | 9 | 3 | 2 | 10 | 0 | 80 | 2 | ... | 2057 | 1 | Medical | 3 | 5 | Research & Development | 325 | Non-Travel | No | 31 |
1464 | 0 | 0 | 2 | 4 | 3 | 2 | 5 | 0 | 80 | 4 | ... | 2060 | 1 | Other | 3 | 5 | Sales | 1167 | Travel_Rarely | No | 26 |
1465 | 3 | 0 | 2 | 5 | 3 | 3 | 17 | 1 | 80 | 3 | ... | 2061 | 1 | Medical | 2 | 23 | Research & Development | 884 | Travel_Frequently | No | 36 |
1466 | 7 | 1 | 7 | 7 | 3 | 5 | 9 | 1 | 80 | 1 | ... | 2062 | 1 | Medical | 1 | 6 | Research & Development | 613 | Travel_Rarely | No | 39 |
1467 | 3 | 0 | 2 | 6 | 3 | 0 | 6 | 1 | 80 | 2 | ... | 2064 | 1 | Life Sciences | 3 | 4 | Research & Development | 155 | Travel_Rarely | No | 27 |
1468 | 8 | 0 | 6 | 9 | 2 | 3 | 17 | 0 | 80 | 4 | ... | 2065 | 1 | Medical | 3 | 2 | Sales | 1023 | Travel_Frequently | No | 49 |
1469 | 2 | 1 | 3 | 4 | 4 | 3 | 6 | 0 | 80 | 1 | ... | 2068 | 1 | Medical | 3 | 8 | Research & Development | 628 | Travel_Rarely | No | 34 |
1470 rows × 35 columns
# ラベル「Age」の値で昇順で。
df2 = df.sort_values(by=["Age"], ascending=True)
df2.head()
Age | Attrition | BusinessTravel | DailyRate | Department | DistanceFromHome | Education | EducationField | EmployeeCount | EmployeeNumber | ... | RelationshipSatisfaction | StandardHours | StockOptionLevel | TotalWorkingYears | TrainingTimesLastYear | WorkLifeBalance | YearsAtCompany | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1311 | 18 | No | Non-Travel | 1431 | Research & Development | 14 | 3 | Medical | 1 | 1839 | ... | 3 | 80 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 |
457 | 18 | Yes | Travel_Frequently | 1306 | Sales | 5 | 3 | Marketing | 1 | 614 | ... | 4 | 80 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 |
972 | 18 | No | Non-Travel | 1124 | Research & Development | 1 | 3 | Life Sciences | 1 | 1368 | ... | 3 | 80 | 0 | 0 | 5 | 4 | 0 | 0 | 0 | 0 |
301 | 18 | No | Travel_Rarely | 812 | Sales | 10 | 3 | Medical | 1 | 411 | ... | 1 | 80 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 |
296 | 18 | Yes | Travel_Rarely | 230 | Research & Development | 3 | 3 | Life Sciences | 1 | 405 | ... | 3 | 80 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 |
5 rows × 35 columns
# 部門名
set(df.Department.tolist())
{'Human Resources', 'Research & Development', 'Sales'}
df.drop("A", axis=1, inplace=True)
df.drop(5, inplace=True)
df.T.dot(df)